Nathaniel D. Bastian

Color portrait of Nathaniel D. Bastian

Instructor of Supply Chain & Information Systems

Department Supply Chain & Information Systems
Office Address 220 Business Building
Phone Number 814-863-0474
Email Address

Download Photo Google Scholar

A leader, practitioner, researcher, and educator of mathematical, computational, analytical, data-driven, and decision-centric methods to support the improvement and enhancement of decision-making in cyber security, national defense, military operations, human resources and manpower, healthcare, logistics, energy and finance.

Dr. Bastian is a decision analytics professional whose expertise lies in the scientific discovery and translation of actionable insights into effective decisions using algorithms, techniques, tools and technologies from operations research, data science, artificial intelligence, systems engineering, and economics to design, develop, deploy and operationalize intelligent decision-support systems and models for descriptive, predictive and prescriptive analytics. He is an author of over 50 journal articles and conference proceedings, several book chapters, and one textbook. Dr. Bastian is the recipient of numerous academic awards and honors to include a Fulbright Scholarship and National Science Foundation Graduate Research Fellowship, as well as multiple research grants. He serves as an Associate Editor for five journals, as well as Referee for over 20 journals. Dr. Bastian is an active member of MORS, INFORMS, ACM, IEEE, SIAM, AAAI and AAAS.

Dr. Bastian currently serves on the Executive Council of the Military Operations Research Society (MORS), the Council of the Military and Security Society within the Institute for Operations Research and the Management Sciences (INFORMS), the Information Science and Technology Study Group at the Defense Advanced Research Projects Agency (DARPA), and other professional society activities. Dr. Bastian also serves as an Affiliated Researcher at several institutions, as well as an Adjunct Professor teaching online graduate courses at several universities. Dr. Bastian previously served as a Visiting Research Fellow at the Johns Hopkins University Applied Physics Laboratory, as well as a Distinguished Visiting Professor at the National Security Agency.

- Optimization, simulation, statistical computing, machine/deep learning, intelligent systems, big data analytics

- Decision science, business analytics, applied econometrics, production economics, engineering management


- Computational stochastic optimization and learning for making inferences and decisions under uncertainty

- Game-theoretic network science, graph mining and social network analysis in real-world, complex networks

- Multiple objective optimization and data envelopment analysis for resource allocation decision-making

- Productivity and cost-effectiveness analysis using econometrics for organizational performance improvement


Ph D, Industrial Engineering and Operations Research, Pennsylvania State University, 2016

ME, Industrial Engineering, Pennsylvania State University, 2014

MS, Econometrics and Operations Research, Maastricht University, 2009

BS, Engineering Management (Electrical Engineering) with Honors, U.S. Military Academy, 2008

Courses Taught

DAAN 881 – Data Driv Dec Mkng (3)
Application & interpretation of analytics for real-life decision making. DAAN 881 Data-Driven Decision Making (3) The theory and application of several quantitative decision-making tools will be studied. The usefulness of these tools will be illustrated using projects and case studies throughout the course. Emphasis will be placed on the application of the tools and techniques and the results they generate. Finding patterns in data and appropriately grouping them are essential in the extraction of information in large datasets. This course will use Principal Component Analyses to transform highly correlated sets of data by means of orthogonal transformation. Cluster analysis will be used to properly group data when working with large datasets. When the outcomes involve categorical variables, Logistic regression techniques will be used to estimate the probabilistic values of the output. The decision space will be divided into smaller regions using Regression tree analyses. When factors are too numerous and highly collinear, Partial Least Square Regression methods will be performed.Public access datasets in the healthcare, transportation and finance industries will be used to demonstrate the applications and the limitations of these techniques.

BAN 888 – Implemnt Analytics (3)
Sets business analytics in real-world context. Explores project life cycle from business problem framing to model lifecycle management. BAN 888 Implementing Analytics for Business (3) The capstone course for the Business Analytics option in the Data Analytics MPS degree program, this course sets analytics problem solving in a real-world context, including communication to non-statistically trained executives. Key topical areas are derived from the common activities of the business analyst and include business problem framing, analytics problem framing, data sourcing, cleaning and integration, analysis methodology selection, model building, model deployment and model lifecycle management including benefit assessment. Topics align with the body of knowledge in the Institute for Operations Research and the Management Sciences (INFORMS) Certified Analytics Professional Study Guide. Students explore each topic in a real world context, by developing solutions to cases in a team setting. Each team selects a case and works through all elements of the analytics body of knowledge, with group presentations on problem framing, analytics model selection and development, and model lifecycle management in a business setting.


Military Operations Research, Associate Editor, (, January 2019 - Present
Journal of Defense Modeling and Simulation, Associate Editor, (, January 2018 - Present
The Cyber Defense Review, Associate Editor, (, January 2018 - Present
IISE Transactions on Healthcare Systems Engineering, Editorial Board, (, January 2016 - Present
Engineering Management Journal, Associate Editor, (, January 2015 - Present